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A time-periodic Hamiltonian system is considered. It is assumed that the system has an equilibrium position in whose
neighbourhood the Hamiltonian is analytic. A constructive algorithm is proposed for computing the coefficients of the normal
form of the Hamiltonian. The algorithm is based on a special procedure for the construction and analysis of a symplectic map
of the neighbourhood of the equilibrium position onto itself. The exposition is carried out using as an example a system with
two degrees of freedom. The coefficients of the normal form are expressed in terms of the coefficients of the generating function
of the map. The algorithm is used to solve the problem of the stability of the relative equilibrium of a Kovalevskaya top with a
vertically oscillating suspension point. © 2005 Elsevier Ltd. All rights reserved.

In many stability problems for the motion and non-linear oscillations of mechanical systems, it is
necessary to investigate the behaviour of trajectories of a canonical system of differential equations in
the neighbourhood of a point of equilibrium which coincides with the origin of the phase space. In such
cases the Hamiltonian is frequently periodic in time or not explicitly time-dependent.

One of the main technical devices for such investigation is Poincaré’s method of normal forms, which
has been extensively developed and used in a large variety of non-linear problems [1-3]. The essence
of the method is to use a canonical transformation to bring the Hamiltonian to a certain simpler (normal)
form. The corresponding canonical system of differential equations is considerable simplified, signifi-
cantly facilitating its investigation.

If the Hamiltonian is not explicitly time-dependent, its normal form may be obtained by algebraic
operations applied to the coefficients of the series expansion of the Hamiltonian in the neighbourhood
of the equilibrium point [1, 2, 4]. For example, the conditions for the stability and instability of the
equilibrium position may be expressed explicitly in terms of the coefficients of the initial Hamiltonian [4].

However, if the Hamiltonian is explicitly time-dependent, the derivation of the normal form involves
a rather complicated procedure. The first stage involves the construction of a time-periodic linear canon-
ical transformation to normalize the part of the Hamiltonian that is quadratic in the phase variables.
Then the terms of the third and higher powers in the series expansion of the Hamiltonian must be
normalized. The non-linear canonical transformation is close to the identity and is defined by series
with time-periodic coefficients, which are constructed using the Birkhoff transformation [5] or its modern
modifications, such as the Deprit-Hori transformation [6]. The construction of these series is extremely
laborious. The technical aspect of the normalization procedure may be simplified considerably by using
the method of point mappings (see [4, Chap. 6]).

In the algorithm proposed here, as in an earlier version [4], what is normalized is not the time-periodic
Hamiltonian itself, but the generating function of a certain map, generated by the canonical system of
differential equations corresponding to the Hamiltonian, over a period. It is then possible to reproduce
the normal form of the Hamiltonian on the basis of the normal form of the generating function.

As before [4], the construction of the map is based on solving a Hamilton-Jacobi equation in the
neighbourhood of the equilibrium point in series form. However, unlike the algorithm in [4], there is
no need for preliminary normalization of the quadratic part of the original Hamiltonian.
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The algorithm is very simple — not much more complicated than the algorithm for the normalization
of an autonomous Hamiltonian system. True, the algorithm must, as a rule, be run using computers.
However, the coefficients of the series expansion of the generating function of the map are obtained
by integrating a system of ordinary differential equations only once over the period; that system is very
easy to derive from the initial Hamiltonian, while the initial conditions are known in advance. As regards
the coefficients of the normal form of the Hamiltonian, they are explicitly expressed in terms of the
coefficients of the series expansion of the generating function of the map.

1. THE ALGORITHM FOR THE NORMALIZATION OF A PERIODIC
HAMILTONIAN

Construction of the map. Consider a system with two degrees of freedom whose motion is described
by canonical equations with a Hamiltonian H(gy, ¢,, p1, p2, t). We shall assume that / is analytic in the
neighbourhood of the point g; = p; = 0 (j = 1, 2), which corresponds to an equilibrium point of the
system, and that it admits of a series expansion

H=H,+H,+H+ ... (LD

where H, is a form of degrees & in g1, g5, p1 and p, whose coefficients are 2n-periodic functions of ¢.
Let q(o) and p(o) (j = 1, 2) be the initial values of the variables g; and p;, and q(l) and p(l) are their

values at t=2m. If qﬁo) and p(o) are sufficiently small, the quantities q(] ) and p; ) will be analyt1c functions

of q(o), qg)), © and p(O) deﬁmng amap T of the neighbourhood of the equ111br1um position onto itself.

We will now outlme an algorithm for constructing this map.
Let X(¢) be the fundamental matrix of solutions of the linearized equations of motion. Its elements
satisfy the equations

dx; oH,  dx oH, H, = H( N
= > > = Xig Xog X349 X400 1)5
dr ax}' +2,5 dt axjs 2 2\ 5 A2gr 350 Mg (12)

j=1,2, s=1234

J+2,5 _

and the initial conditions
X(0) = E, (1.3)

where E, is the 4 x 4 identity matrix.
Instead of the variables g; and p; (j = 1, 2), we will introduce new canonical conjugate variables u;
and v; by the formula

q, Uy
u
2= x| (14)
P Y,
P2 U,

This change of variables is a canonical univalent transformation [7]. The series expansion of the new
Hamiltonian G(u1, u,, vy, Vy, ¢) contains no quadratic terms in u;, 4, vy and vy

G=G+Gy+ ... (L.5)

where Gy is the forma H) of (1.1) in which the highest-order variables expressed in terms of the new
ones by formula (1.4).

The change of variables (1.4) reduces the construction of the map T to finding the map q(o) pj(o)
(1) 1)(1) over a period, i.e. for ¢ varying from 0 to 2z. In this situation we have q(O) = u(o), pjo) = 1)(0)
and
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(N ()
q, uy
) n
U
1 ,| = xew fl) (16)
P(1 Yy
n (1
P(z U;

Since expansion (1.5) contains no second-order terms, the map q p( ) u( ) 1)](.1) is close to an
identity. It is defined implicitly by the equalities

© _ 9§ a _ dS .

v, = —; =1,2
J ap (0) J auﬁ-l)

(.7
(0 1) _(0) ) (D (0 (0 ay (1) (0 (0)
S = u )p§)+u§)P§ + S5 (u ),u(z P ),p(z )+ S4(uy ,uz),pl s Dy )+
where S is the value at ¢ = 2xr of the function
1 0 1 [} 1 1 0) 0 1) 1) 0 ()]
@ = u"p” + 15" py" + @3, ul”, P17, p5 0+ @y, S, 7, p )+ (1.8)
which satisfies the Hamilton~Jacobi equation
o) n oy P 9P o 0
_a_+G( (])5 (2)s-—_|7_—_1,t)=09 (I)k(u(] )au(2 )’p] 7p(2 ),O)EO» k= 3’45-" (1.9)
t au( ) au( )
1 2

Substituting expansions (1.5) and (1.8) into the left-hand side of Eq. (1.9) and equating terms of powers
3, 4, etc. to zero, we obtain equations for the forms @, @y, ... :

- =Gy 5 = —G4—Za ™, m,..., G, = Gui" ", p, pi, 1)

j=1

(1.10)

Equating the coefficients of like powers of u(l) p(O) and p(o) on the left and right of these equations,
we obtain a system of ordinary differential equatlons for the coefficients of the forms ®;, @y, ... . By
the identities of (1.9), these coefficients vanish at ¢+ = 0. The equations for the coefficients must be
considered together with the system of equations (1.2), (1.3), defining the elements of the fundamental
matrix X(¢), which occur in the substitution (1.4) and therefore also in the expressions for the functions
G3, Gy, ... . Integration of the system thus obtained from ¢ = 0 to # = 2r yields the functions S, Sy, ..
and hence also, (1.6) and (1.7), the explicit form of the map T

.

(1) -
7 q
g5’ q

2 = X@2m)| 2
o) b

1 -
p(2) P

. 98, & 'S, aSs, 0s,

q; = 4; _a (0)+Z

@~ (0 0) - (0

P l~lap1)aq )a 5) apj)
) (1.11)

32 S; 98, aS,

0 0)4_ (0) 0
34"9qy apy”  3g"”

oS
5= PO 2By
pj_pj +a—(0)

qJ I=1

0 0 .
Se = i@ ¢, 0y, =12 k=34

where O, denotes terms of degree greater than 3 in q(o) q(o), © and pgo).
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Linear normalization of the map (1.11). The characteristic equation of the matrix X(2r) of the linearized
map (1.11) is reciprocal and has the form

Q4—a193+azgz—ale+l =0 (1.12)

where a4 is the trace of the matrix X(2%) and a, is the sum of all its principal minors of the second
order. We shall consider only the case in which the parameters of the system lie in the interior of the
stable domain of the equilibrium position g; = p; = 0 (j = 1, 2) in the first approximation. In the plane
of the coefficients a; and a, this domain is defined by the following system of inequalities [8]

_2<a,<6, 4ay,-2)<a<(ay+2)4 (1.13)

When these inequalities hold, the roots of Eq. (1.12) are complex conjugates, distinct and of absolute
value 1. The characteristic indices +iA; (j = 1, 2) will be pure imaginary.

In this section we will use a change of variables to bring the linear part of the map (1.11) to real
normal form. This transformation may be constructed as follows. Assign (arbitrary) signs to the quantities
A (j =1, 2) and let ¢; denote an eigenvector of the matrix X(2r) corresponding to the root (multiplier)
p;= ¢ of Eq. (1.12). For the real and imaginary parts rj and s; of the vector ¢; we have the following

system of equations
X(2m)r; = cos2mA;r; - sin2nh;s;, X(27)s; = cos2mhs; + sin2wh;r; (1.14)

Letr}, s; be some non-trivial solution of system (1.14). Let g; denote the scalar product of the vectors
r; and Is}, that is,

g = (r;", Is;"), I= £ 0
-E,

where E, is the 2 x 2 identity matrix. It can be shown [4] that the quantities g; (j = 1, 2) do not vanish.
We introduce the notation

. -1/2
8; = signg;, ©; =8 ¢; = g

j=12 (1.15)

and we let N denote the 4 x 4 matrix whose jth and (j + 2)th columns are ¢;6x7 and ¢;s7 (j = 1, 2),
respectively.

It can be verified directly that the matrix N is symplectic and transforms the matrix X(2r) to real
normal form G:

NIN =1, N'X2nN = G

G, G
_Gs Gc

G = . G, = COS2TG, 0 sin2mo, 0

> Gx =
0 Cos2n0,

0 sin2no,

The matrix G defines two independent rotations through angles 2n6; and 2nc,.
Instead of g; and p; (j = 1, 2) in the map (1.11) we define new variables Q; and P; (j = 1, 2) via the
univalent canonical transformation defined by the matrix N

q, 0,
(LN SN 2 (1.16)
P P,

P2 P,
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Omitting the intermediate steps, we write the expression for the map (1.11) in the new variables

(1) -
! O
(1) ~
2 =G ?2 (1.17)
piY P,
SO0 I R
oF, & 9°F, OF, OF
Qj - Q(‘O)_ 3 . Z 3 3 4
TP SapPagar” ap“”
oF, & 9°F, OdF, OF
i—’j= (0) 3 z 3 3 4 40, j=1,2
J aQ(O) o laQ(O)aQ(O)aP(O) aQ(O)
We have used the notation
Fy = S5 (1.18)
2 * \2 * \2
1 a5;3 : AN
Fy=S;+5 2 {("1,% M3 24t No 24 0424 )[——] +(ny '”3‘+”2'"4')(_ -
2j=1 j j i i BQE-O) i*3j j4j aPﬁ-O)
2 as¥ as¥ aS¥ as¥
-j§1 (n13n3_1+n23n41)a (Q)a (0) (nl4n3]+n24n4})aQ(0)aP(0)
as} asy aS¥* as¥ 1.19)

+(n3ny, + "23”44)a (o)a (0 +{(nyngy + g ng) —

p©5p0

where n,, are the elements of the matnx N and 7 (k = 3, 4) are the forms S from (1.11), with q(o) and
in accordance with the transformation (1.16).
Correspondlng to the linearized map (1.17) we have the normal form H3 of the quadratic part H,

p( expressed in terms of Q ]0) and P

of the initial Hamiltonian (1.1)

H3

1 1
écl(Qf +P))+ icsz(Q§ + Pl

(1.20)

Non-linear normalization of the map. Non-linear normalization is more conveniently done in complex
variables. We apply a univalent canonical transformation Q1, Oy, Py, P — X1, X5, y1, 2 to (1.17), where

0; = 3

where § is the square root of —1.

+’(x +y), P = —t(x-

1-i
/ 2

In complex variables x;, y; the map (1.17) becomes

3,

2

3°z, 3z, 9z,

(1 (0)
xj =0

+ 2

@
dy Yj

3z,

O)a (0)8 ©) J ;0)

I—Iayj

2

3z, 0z,

)’j)§

z,

) (0)
yj ~9j+2[ +

(0)
axj

>

+
0
= 18x§0)8x§0)8y5 ) axg-o)

j=12 (1.21)

)

+04]; ji=12

(1.22)
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where

i2no; —i2no; .
pj=e L pra=e ;o J=1,2 (1.23)
are the roots of the characteristic equation (1.12), and

2 2 *\2 * *
. ] oFtY (oF! IF¥ OF}
Zy=Ff, Z, = Ff+3) H ] —( +2 (1.24)
. 4j - 8)(540) Byﬁ.o) ax§°’ayj.°)

where F; (k = 1, 2) are the forms F defined by (1.18) and (1.19) in which QJ(O) and P](.O) have been
expressed in terms of xj(.o) and yj(o) by formulae (1.21). The forms Z, in relations (1.24) will be written
as sums '

k2

v v By
ORI RSN _
Zk = zzvlvzu.ule YooV Y2 k=34

where the summation is carried out over non-negative integers vy, v, u; and y, that add up to k (and
similarly in what follows, when analogous representations are used for forms).

Normalization of the map (1.22) in second-degree terms. We replace the variables X,y (j=1,2) by
new variables §;, M; (j = 1, 2), using the generating function R(x;, x5, n;, 1) defined by

v 1
R=xm+xnN+R;+R,+...; R, = 2:rvl\,luluzx\,l')czz”l’]lll n;z (1.25)
The equalities
oR JR .
;o= o, ;= o = 1,2
yj axj é] anj .]
yield explicit expressions for the old variables in terms of the new ones
: OR, 22: 9°R, OR, OR, o
X. = e i —— — — 4
! ! 311,- l=1311j8§13m aﬂj *
3R, & 'Ry IR, IR (126)
3 >+ =410, j=1,2

.= o —— —_— e —
Y= NTOE T Adgagam,
where R are the functions in (1.25), with the variables x; replaced by ;.

Using equalities (1.26), we express x}l), y}l) and x}o), yfo) in terms of E_,;l), n§1) and &50), n}(.O), respectively, and
substitute them into relations (1.22). Solving the equations thus obtained for §§1) and nj(-l), we obtain
the map in the new variables

24 0 OW .
A R R T R e
an- aéj

J

where the dots stand for the terms of power greater than two in £{”, £V, n © and n(zo), and
0) ¢(0) _(0) _(0) ©) ¢(0) _(0) _(0)
Wy = Zy&) & ms ) + RyE £ ni” i) -

(0) ()]

(1.28)
~Ry (0,81, 0,62, 0517, p )

The function R; is chosen in such a way as to simplify (or even to eliminate) the second degree terms
in (1.27) as far as possible.
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We write W3 as a sum

_ ©"'e®? " ©°
W3 = Zw"l"zl’-luz&’l 2 i M

Equations (1.23) and (1.28) imply the following expressions for the coefficients

1-¢

Wy vatity T Zvvagi, + (

2wl
VivatiHy . _
)erVzﬂluz’ lV1Vzu1M2 = (Vl - ul)cl + (V2 - “2)02 (1-29)

In the interior of the stable domain (1.13) of the linearized map, there can be no resonances of up
to and including two. Let us assume that there are also no third-order resonances, i.e. that there can
be no equality

ko, +ko, =n (1.30)

where n is an arbitrary integer, and k; and k, are integers such that |k;| + |k,| = 3. Then the number
Ly ivapup, In (1.29) will not be an integer and, putting

Zanzuxuz

er"zllll-‘z = i2nl (131)
e

Vivaliiy
-1

zve ge;t Wy, = 0. Then W3 = 0, and there will be no second degree terms in the normalized map
1.27).

Now suppose that there is one third-order resonance in the system. We shall consider not arbitrary
resonances, but only resonances for which the numbers k; and &5 in (1.30) satisfy the inequality k1%, = 0.
Only such resonances may cause a system that is stable in the first approximation to become unstable
in the non-linear approximation [9]. Thus, we shall assume that one of the following four resonance
relations holds in the system

)36, =8, 2)306,=n, 3)0,+26,=n, 4)20,+06,=n (1.32)

Then the two monomials in Wj for which /.4, €quals 7 or —n cannot be made to vanish. The map
normalized in second-degree terms will be defined by equalities (1.26) in which

k k. k k.
) ')’ ©' ©°
Wi =z 0061 &2 +Zook,M M2 (1.33)

Normalization of the map in third-degree terms. Suppose that there are no third-order resonances.
Choosing the coefficients of the form R; according to formula (1.31), we eliminate all second-degree
terms in the map (1.27). Calculations show that with this choice of R; the map may be written as

ow oW
& =& - (g)+04], n; = 9j+2(n§0)+_<§)+04} j=12 (1.34)
aﬂ~ a&j

J

0) _(0) (0 0) £(0) (0) (0
© 2@ @ 0  w 0Z & ED 0, nP)aRry . £, 01", nd)
W, = ZyE" 8 a0+ Y o g *
o) an’ 9% (135)

0) 0 0) 0) (0) 0 0) ()
+ Ry, £V, ) - Ry(0,81, 2, 0m”, 0

Suppose there are no fourth-order resonances in the system. One might try to choose the form Ry
so as to eliminate the third-degree terms in the map (1.34). However, this cannot be done. As is obvious
from expressions (1.29), the terms in W, for which vy = p;, v, = U, cannot be eliminated. The map
normalized in third-degree terms may be written as equalities (1.34) in which

©?, (0 (0)£(0)_(0),_(0) ©7_(0)
W, = woeoli My +win€) & My My +wepbs M) (1.36)
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The coefficients of the form (1.36) are real numbers. They are expressed in terms of the coefficients
of the forms F3 and F, from (1.18) and (1.19) by formulae (3.7)—(3.9) of Section 3.

Now suppose that there is a fourth-order resonance in the system, that is, equality (1.30) holds with
|ki] + lky] = 4. As in the case of third-order resonance, we will confine our attention to single
resonances, and only to those for which the numbers k; and k, are non-negative. The following five
such resonances are possible

)46, =n, 2)40,=n, 3)2(c,+06,)=n, 46,+306,=n, 5)306,+0,=n (1.37)

For each of these resonances, the form W, in the normalized map (1.34) will contain, apart from
non-vanishing monomials of the form (1.36), also two monomials characteristic for that specific resonance

) (0) (0)£(0),_(0), (0) 0y (0)°
Wy = wyli Ny +win&) 6 My My +weby My +

0 ) " _©? (1.38)
tWe kol &2 FWoor kM M2
The last (resonant) coefficients in the form (1.38) are complex conjugates
Wieky00 = M k,00 = EVik,000 Wooksk, = M ky00 + 1V k00 (1.39)

Expressions for the quantities 00 and Vi z,00 are given in Section 3 (formulae (3.10)—(3.19)).

The normal form of the Hamiltonian. Given the normal form of the map, it is now quite easy to construct
a 2z-periodic function of ¢, T'(&y, &y, M1, My, ¢), which is the normal form of the original Hamiltonian
(1.1). If there are no resonances of order up to and including four, then

, , 1 2.2 2.2
[ = io§m, +ic,§m,~ ﬁ(wzozo‘iml +wi & €My + woapa€aM2) + Os (1.40)

where Os are the terms of degree greater than four in &, nj, and wag,, w11 and woyg, are coefficients
of the form (1.36).
If there is a single third-order resonance (see Eqgs (1.30) and (1.32)), then

. . 1 —intg ki k i k, &k
I' = io&m, +102§2n2_ﬁ(2k1k2006 r§11§22+Z00k1kze,mn1]r|22)+04 (1.41)

where zy,00 and zopx, are coefficients of the form (1.33).
If there are no third-order resonances but there is a single fourth-order resonance (see Eqs (1.30)
and (1.37)), then

. . 1 2.2 2 2
T = i6\ &M, +i6,8)M; — 5= (Wagpe& 1M1 + w11 &1 EaMiMy + Weaea&oMi +
2n (1.42)

—intg ki Ky int_ky_ky
+ Wi k006 5162 T Wookk,€ My M2 )+ O0s

where wy,,, ., are coefficients of the form (1.38).
In real canonically conjugate variables r;, ¢; (j = 1, 2), defined by a univalent canonical transformation

6, =~y 2 ;= e 0= 1,2 (1.43)

the normalized Hamiltonians (1.30), (1.41), (1.42) become, respectively

2 2 52
H = O r|+Cyry+ gt + Ty + copta + O(r) +15)

) (1.44)

2 k2 k2 .
H =o0r +0,ry+ Z{—;rl’ ry’ (Ol g 00SINY + ﬁklkZOOCOSY) +O0((r; + r2)2) (1.45)
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2 2 2 k)
H = 6,1+ Oyry+ Cyg | + € 11Ty + ool + r]l 5 (ock K008I0 +
52
+ Bi,k,00€087) + O((r; +15)77) (1.46)
where

Cyg = w cyp = L w Cop = w (1 47

20 = 37720200 €11 = 5pWine o = 5p%00 AT)

] By, o = & = k@, +k t 1.4
Chky00 = 2Vhik000  Phiigoo = Moo V= K@+ @ —n (1.48)

2. THE STABILITY OF THE RELATIVE EQUILIBRIUM OF A RIGID
BODY UNDER OSCILLATIONS OF ITS SUSPENSION POINT

Consider a rigid body moving in a uniform field of gravity. Let 0..XY+Z+ be a fixed system of coordinates
whose O+Z+ axis points vertically upwards. Suppose one point O of the body is moving along the vertical
0:Z according to a harmonic law O+O = —acos(Q2¢) (a > 0). Let mg be the weight of the body and
let I be the radius vector of the centre of gravity relative to the point O. Let Oxyz be a system of
coordinates moving with the body, its axes directed along the principal axes of inertia of the body for
the point 0. The moments of inertia are 4, B and C. One further system of coordinates OXYZ is moving
linearly with its axes parallel to the corresponding axes of the system O+ X:Y+Zx.

When the body’s centre of gravity lies on the vertical O+Z, it has two relative equilibrium positions
(in the system OXYZ). One corresponds to the normal position of the body (with the centre of gravity
below the point O), and the other to the inverted position (with the centre of gravity above O). We will
investigate the problem of the stability of these equilibrium positions of the body. Let us assume that
the body has the mass geometry of a Kovalevskaya top. Then 4 = B = 2C, and the centre of gravity
may be assumed to lie on the Ox axis.

The Hamiltonian. The mutual orientation of the trihedrals Oxyz and OXYZ will be defined in terms
of the Euler angles v, 0, .. Let vy be the velocity of the point O of the body, and let p, g and r be the
components of the angular velocity vector of the body in the system of coordinates Oxyz. The kinetic
and potential energy are given by the formulae

T = %m03+m(vo,(1)><l)+%C(2p2+2q2+r2), I = mglsinesin(p

Dropping terms independent of v, 6, ¢ and their derivatives with respect to time, we obtain the
following expression for the Lagrangian L = 7 -1

L= C(\]Izsin29+92)+%C(\]}COSG+¢)2+manSin(Qt)(¢Sinecos(p+

2.1
+6cosBsing) — mglsinOsing
The generalized momenta are evaluated in the usual way
oL dL oL
Py = a—\t‘;, Pg = 3%’ Py = 3% (22)

The coordinate  is cyclic, and therefore p,, = const; we shall assume that p,, = 0. Then, using Eqs
(2.1) and (2.2), we obtain the Hamiltonian H = H(8, ¢, pe, p,, t) in the standard way. Introducing a
dimensionless “time” variable T = Qt, we transform to new coordmates and momenta g; and p;
(j = 1, 2) by applying the canonical transformation (of valence (CQ)™)

¢ = 3n+q 0= n+q
=5 , =5tD

27 2 (2.3)
py = CQpy+maQlsintsing;, py = CQp,+maQlsintsing,
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In the new variables, the Hamiltonian will be

2
H = %(pl + 2[33inrsinq1sin2%) (tgzqz +2)+

2.4
1 L 2q;) 4
+3 D, + 2Psintsing,sin 7 ~ 0LCOS g COS g, — PcosT(cosq, + coSq,)

where we have introduced the dimensionless parameters

mgl _ mal

Tt T C

The Hamiltonian of the perturbed motion. The equations of motion with Hamiltonian (2.4) admit of
two particular solutions: q; = ¢, = p; = p, = 0 and g; = =, g3 = p; = p, = 0, corresponding to the
normal and inverted positions of relative equilibrium. The Hamiltonian of the perturbed motion for
the normal equilibrium position is the Hamiltonian (2.4) itself. Its expansion in powers of g; and p; has
the form (omitting terms independent of g; and p;)

H = H2+H4+... (25)
I 2 1 2 1 21 2
H, = 5P+ i(oc+ Bcost)g; +Zp2+§(a+ Bcost)q; (2.6)
1 4 a4 12 2 2, g
Hy = = 57(0+ Beost)(q; +q2) + 345(Pi — 0uq)) + 7Bsintq195(9, Py + 24,p1) @.7)

For the inverted equilibrium position we introduce perturbations g; and p; by making the following
canonical change of variables

g, =T+qy, g, =gy P =P, Py = py—2Psintsing,

Replacing T by T + & in the corresponding Hamiltonian of perturbed motion, changing the sign of
the parameter o and omitting the primes in the notation of the variables g; and p; we obtain the
Hamiltonian (2.4). To analyse the stability of the relative equilibrium positions of the body, therefore,
we can take (2.4) as the Hamiltonian of perturbed motion, assuming that B > 0 and o is of arbitrary
sign. As a result of the analysis, the half-plane B = 0 is divided into stable and unstable domains. Those
of them for which o, > 0, B = 0 will be stable and unstable domains of the normal equilibrium position.
The domains for which oo < 0, B = 0, after mirror reflection in the axis oo = 0, will define the stable and
unstable domains of the inverted equilibrium position.

The results of a stability analysis.

The linear problem. In the first approximation, the equations of perturbed motion for the pairs of
canonically conjugate variables gy, p; and g», p, are separated. The characteristic equation (1.12) takes
the form

(p*-2A,p+1)(p°~24,p+ 1)= 0

A = %(x11(2n)+x33(2n)), A, = %(x22(27t)+x44(2n))

The stable and unstable domains in the plane of the parameters o and [ are obtained by applying
the two Ince-Strutt diagrams for the Mathicu equation [10].

The stable domains in the first approximation are given by the system of inequalities |4{| < 1,
|A,| < 1. If at least one of these inequalities holds with the opposite sign, the system is unstable.

In what follows, in order to avoid dealing with a denumerable set of stable and unstable domains in
the half-plane B > 0 of admissible parameter values, we will confine ourselves to the part of the half-
plane defined by the inequalities o < 2, 0 < 8 < 10. With these parameter values four stable domains
exist in the first approximation. They are the sets of interior points of triangles g, (s = 1, ... , 4) whose
bases are the segments [0, 1/4], [1/4, 1/2],[1/2, 1], [1, 2] of the axis B = 0. The vertices Q, of the triangles
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opposite the bases are Q;(-0.0851, 0.5942), 0>(0.3687, 0.2547), 05(0.9216, 0.9776), 04(1.7924, 2.2558)
(see F% 1). The left and right curvilinear boundaries of the triangles g, are defined by the equations
o= oY(P)and o = ol(B), respectively. For small B

—

ol = _41_1[32+0(;34), ol = i—%B+O(B3), o = +%B+0(33)

1 3 o _1 1 3
3B+0(B), af = 7+5p+0(B"

R
N
|

N =

" _ 1 o2 4 W _ 1,352 4 (0 _n_lg2 4

For values of o and B that satisfy the inequalities o <2, 0 < p < 10 and lie outside the domains g;
(s =1, ..., 4), one has instability in the strictly non-linear formulation of the problem.

The normal form of the quadratic part (2.6) of the Hamiltonian of perturbed motion has the form
(1.20). If B = 0, we have ¢y = Vo, 6, = Vo/2. Using the continuity of the characteristic exponents,
one can derive formulae to compute first approximations of the quantities 6; and o, in the stability
domains g;. Putting ¢; = (2n)"1arccosA]- (j =1,2), weobtain 6, = ¢, 06, = cpingy, 63 = 1 - ¢y,
o,=cyingy 061 =1-c,00=1-¢yingg,ando; =1+ ¢3,0, = 1 ~¢yingy.

The non-linear problem. The third-order resonances in the problem of the stability of equilibrium of
the body have turned out to be unimportant, since expansion (2.5) contains no third-degree form Ha.
It is obvious from the structure of the forms (2.6) and (2.7) that those of the fourth-order resonances
(1.30) in which the numbers k; and k, are odd are also unimportant. Computations have shown that
the fourth-order resonances (1.30) in which the numbers k; and k, have different signs are not realized
in the stable domains considered here in the first approximation; when k; and k, have the same sign,
only nine resonances are possible:

1, 3)40, =1, 4)2(0,+0,)
3, 8)2(6,+0,) = 4, 9 40,

4o, =1, 2)2(0,+0,)

2, 5)40, =3
5

(2.8)

Corresponding to each of the resonance relations (2.8) in the o, B plane there is a curve issuing from
a point (o, 0) on the B = 0 axis, where

oy

0.0625, o, = 0.0858, o, = 0.1250, o, = 0.3431, a5 = 0.5625
0 = 07721, o, = 1.1250, o5 = 1.3726, oy = 1.5625

The resonance curves are shown in Fig. 1. There are three resonance curves 1-3 in the domain gy,
one curve 4 in g,, two curves 5, 6 in g3, and three curves 7-9 in g.

Off the resonance curves (2.8), the Hamiltonian of perturbed motion (2.5) has the normal form (1.44).
If

D = cj; - 4eycp %0 (2.9)

then the equilibrium position in question is stable for most initial conditions (in the sense of Lebesgue
measure) [4, 11]. In addition, if the function

2 2
F(ry,ry) = cyori+cpriry+ cply (2.10)

is of fixed sign for r; > 0, r, 2 0, the equilibrium position is formally stable [4, 9, 12].
For fourth-order resonance, the normalized Hamiltonian has the form (1.46). If

k2 kyl2 [ 3 2
|F(ky, k)| > k)" ky N Ok k00 * Bl k,00 (2.11)

the equilibrium position is stable in the third approximation (that is, including terms up to Hj inclusive
in expansion (2.5)). In the case of the opposite inequality, the equilibrium position is unstable in
Lyapunov’s sense [4].
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Computations based on the algorithm of Section 1 have shown that, for values of the parameters o
and B off the curves (2.8) in the stability domains in the first approximation, D is negative. For such
parameter values, therefore, the relative equilibrium position of the body is stable for most initial
conditions, and it is also formally stable.

On all the resonance curves (2.8) except for the curve 2(c; + ;) = 2 one has inequality (2.11), and
on these curves, therefore, one has stability in the third approximation. As to the curve 2(c; + ©,) = 2
itself, it is divided by the point 0+(0.3622, 0.2161) into stable and unstable segments (see the upper
left insert in Fig. 1). On the P40+ segment one has stability in the third approximation, and on the @+,
segment the relative equilibrium of the body is unstable in Lyapunov’s sense.

3. COMPUTATIONAL FORMULAE

This section presents formulae for computing the coefficients of the normal forms (1.44)—(1.46). For
the forms Fy and Fj (k = 3, 4), defined by (1.18), (1.19) and (1.24), we introduce the notation

v Va 5} ] V1 Va Hy My
_ © ' 5050 50 % _ * © "' (07 (0" (0)
Fk - Z,fVIVZptlu2 1 2 Pl PZ ’ Fk - zfv,vzp,ule X2 N N2 (3'1)
For the form F3 we have f3 1,1, = Zyvuuy,» and the following relations hold

1—1

1-i
4 (a"l"zll)uz

T(avl"zulﬂz_ ib"lvzl*]uz) (32)

* . * _ _
fvlvzlllllz + lb"l"zuluz)’ fﬁllqule -
(@3000 = f3000 = 102005 (P3ooo = F2010~ foosn)> (32100 = Fa100 = F1o11 = foizo)

(2100 = fa001 + f1110 = So021)> (2010 = 1000 ¥ 3F3000)s  (B2010 = F2010 + 3 S 0030)

(@110 = 2(f 2100 + Forao))»  (Br110 = 2(f 2001 + fo021)) (33)

ayo1 = fa00+ Fro11 = forzos Daoor = Foozr + Fii10— S 2001

a1002 = fra00 = Froo2 + foris Brooz = Foaro= 1101 = Foorz
From this point on, an equality enclosed in parentheses means that, apart from the equality itself,
any equality obtained by simultaneous permutation of the first two and last two subscripts also holds.

For example, besides the first equality of (3.3), we have the equality agspo = foz00 = fo102-
The coefficients f550, £1111 and f g, of the form F are real

(o0 = —(3fa000 + Fa020+ 3F0040)/2)s  FTiin = —(Fa200 * F2002 + Fozzo + Foo2) (3.4)
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The remaining coefficients of the form F needed for normalization are pairs of complex conjugates

1 1 .

* - = : * - _

fV1V2P1H2 - 4(a"|"2“1112 * le|V2P1H2)’ fﬂlM"le 4(aV1VzP|P2 lbvl"ﬂlﬂlz)
where

(as000 = Fa0— S a000 — foo40)» (bagoo = F1030 = f3010)
(a1300 = foan1 + fr102 = fi3o0 ~ foo13)s  (Brsoo = Forz * fioos — Fra01 = Fo30) (3.5

ayoo = S1111 = F2200 + Fa00=Foozz + forzo D220 = Froi2 = fraie + Sorz1 = f2101

The function W, defined by (1.35) may be written as a sum

v vy W
©'e®’ ' (07
W4 = Zwvlvzuluzél 2 M Ma (3'6)

and we introduce the following notation

~t 2 2
Cyv =dyy b, » Cypy = 04yy +Oyy
1Vali iy V2l M TV Vol Ity V2l 1y 1Val iy 1V2lh iy
+
c =a b ta b
mymyn nyr 155, MMy " S5, FiFS 5y myman iy
A +b b
c = da a X
m MRyl 1852 KOG IOTO AT ] LOUCIOTO NS SYSX IR

Relations (1.35), (1.23), (1.24), (1.31) and (3.1)—(3.5) yield the following expressions for the coefficients
of the function (1.36)

1 - - 1 -+
_ %
Wamo = S2020 §(4C2010 + 350103000 + C20012100 + C1110) — T‘é{30‘g(“01)czolo +

3.7
~+ ~+ ~+ ~
+ Ctg(!0,)Ciq10 + 9Ctg (3MO ) 3900 + CtEIM(26, + 65)]Cy100 — CLE[M(20 — T)) 0011
_ * 1 - + + + - —
wi = fiint 3(010021101 + ¢\ 1102001 + Coz011110 + €11012010 + C11102100 F C11011200) ~
1 e t -+
- 4—1{ ctg(nG | )a0101101 + CL€(T62)¢ 1100201 + CLIT(20, + Gyl Co100 + (3.8)
~t ~t ~t
+ ctg[n(0, +206,)1¢ 500 + Ct[M(20, — 65)1Cx00; — CtE[R(0] ~20,) 1902 }
ok 1 4 - + 1 -+
Wooz = foooe + g( o201 *+ 3¢02010300 T €12001002 + C1101) — '1‘6{3Ctg(7wz)cozm +
(3.9)

+ Otg(RG,)E 110, + 9B (3T0,)Eqs00 + CLE[M(G, +26,)]C 1200 + Clg[M(T) = 26,)1¢ 700 }

For the real and imaginary parts of the resonance coefficients (1.39) we have the following expressions

1 1
Maoo0 = 7%a000 + 1—6(903000 + 2100 = C2010 ~ C2001) +
| ) (3.10)
+ 1—6'{3 ctg(n6,)E 30002010 + CEIM(26) — 62) 1821002001

1 1 .- .— — _—
Vaooo = — meoo + 3‘5(903000 + €100 = €2010 ~ C2001) ~
| . . (3.11)
- _1—6{ 3ctg(n6)Ca0103000 + CtEIM(26, ~ 6,5) 120012100
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1 1
Wod00 = 7 %0400 + I‘é(gcowo + Cia00 + C1002 = Coz01) +

1 . N
+ E{3Ctg(nc2)003000201 - ctg[n(o, - 262)]CT0021200}

1 1 - -— - .
Vosoo = “meoo + 55(900300 + C1200 — 1002~ Coz01) —

1 _
- i-g{3ctg(n02)c$2010300 = ctg[m(0; - 26,) ¢ 9001200 }

_1 1 4 3 + +
Haz00 = Zazzoo"'ﬁ[ (2100 + €1200) + 3(C 12003000 * €03002100) = C1110 ~ C1101 +

_ . 1 . -
+ C0101002 — 20010201 1 + 1—6[Ctg(7C01 )(2811011200 + C12002010) +

A A= At A
+ ctg(m0)(28 11102100 + E21000201) — 3¢t (376 1) 30001002 — 3 €t (3162) 843002001 )

1 1., .- am - .
Vo0 = ‘szzoo + ﬁ[é(clzoosooo + 803002100) +4(C2100 + Cr200) —

t A ~— ~— 1 + +
= 2(20101002 + €02012001) ~ €1101 ~ C1110] = ‘1—6[C‘g(7501)(2011011200 + C2002010) +

+ + - +
+ ctg(16,)(2¢ 11102100 + C21000201) — 3 €8 (36 ) 10023000 — 3t (31T ) 3002001 1

1 + + + -
Hizo0 = 3%0 * E(6c12000300 + 221001200 = Coz011101 + C11101002) +
1 At e am at
+ 1_6[3“8(7‘01)003001101 + ctg(n0,)(2¢ 15000201 + C12001110) + 2€t€(576,)¢ 10022100

_ lb 1 6o 2% At A
Visoo = 3 1300“‘E( Co3001200 *+ 2€12002100 ~ C10021110 — Co2011101) —

1 _
- IgBCtg(ncl)Camonm + ctg(116,)(2¢ 12000201 + CTzoomo) = 2¢tg(516,)c31001002]

1 1 6 + 2 + + +
H3i00 = 1‘13100+T6( €21003000 * 2€12002100 — €20101110 = C11012001)

1 - - - .
+ B[3ctg(n(52)c30001110 + tg (6 )(2851002010 * C21001101) + 2L (SO )E 2002001 ]

1 1, .- - am -
Vi = _Zb3100 + ﬁ(6caooozxoo + 2215002100 ~ €20101110 — C11012001) —

1
- ‘13[3(3{%("52)0;0001110 + ctg (16, )(2¢31002010 + Crioonon) + 2¢tg (576,)C30011200)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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